Схема подключения компрессора с двумя пускателями. Параллельное соединение компрессоров

Воздухопроводный шланг предназначен для соединения компрессора с краскораспылителем и водомаслоотделительными фильтрами. Существует несколько разновидностей воздухопроводных шлангов, различающихся материалом изготовления и схемой включения. Для того чтобы выбрать подходящее вам наименование, необходимо обладать определенными знаниями их свойств и конструктивных особенностей.

Наиболее распространенными шлангами для комперссоров, используемыми в гаражной покраске, являются:

  • резиновые армированные;
  • пластиковые армированные.

Технически и морально устаревшие витые шланги для компрессоров , которые все еще можно встретить в гаражах многих домашних мастеров, использовать ни в коем случае не рекомендуется. Это связано, в первую очередь, с их небольшим сечением, составляющим всего 5-6 мм. Кроме того, старые шланги очень ненадежны и могут переломаться в самый неподходящий момент, полностью перекрыв доступ воздуха к краскопульту. Как следствие, дальнейшая окраска становится невозможной. Именно поэтому делать выбор необходимо исключительно в пользу современной продукции. Давайте рассмотрим ее основные достоинства и недостатки.

Резиновый-армированный шланг прочен, износостоек, подходит для использования с кислородными баллонами. Его единственным недостатком может считаться лишь сравнительно большой вес.

Пластиковый-армированный шланг стоит дешевле резиново-армированного, несколько меньше весит. Его главным недостатком является высокая чувствительность к изменениям температуры окружающей среды. Так, при низких температурах данный шланг излишне затвердевает, при высоких - размягчается. Как следствие, уменьшается срок его эксплуатации. Особенно плохо пластиково-армированные шланги переносят воздействие прямых солнечных лучей, в результате воздействия которых их прочность снижается в несколько раз.

Существует 2 типа практичных и быстросъемных разъемов, предназначенных для соединения воздухопроводных шлангов с компрессорами, влагомаслоотделительными фильтрами и краскопультом - штуцеры и фитинги . Они вставляются друг в друга по схеме «штуцер в фитинг». При этом штуцером оборудованы шланги и водомаслоотделительный фильтр, а фитингом - краскораспылитель.

В том случае, если вы приобрели влагомаслоотделительный фильтр без штуцера, к нему необходимо подобрать входной/выходной штуцер, имеющий наружную резьбу для соединения.

Разъемы шлангов закрепляются посредством специальных элементов-хомутов. Выбирая данные крепежные элементы, не стоит обращать внимание на особенности их конструкции и внешний вид: важнее всего, чтобы соединение не «травило» воздух.

1. Вступление

Работа компрессоров при параллельном соединении в основном характеризуется тем, что в одном холодильном контуре работают несколько компрессоров. Для таких установок необходимы специальные варианты конструкции для достижения максимально возможной надежности. При проектировании таких установок мы рассмотрим следующую информацию.

В данном бюллетене обсуждаются конструктивные варианты для соединения одноступенчатых компрессоров. Здесь нет информации полезной для принятия решения «за и против» систем параллельного соединения компрессоров. Только квалифицированный инженер может принять решение, о том, какие варианты конструкции будут приняты в конкретных условиях. Дополнительно необходимо заметить, что система с параллельным соединением компрессоров не является заменой для систем TWIN. Данный тип соединения уже включает в себя 2 компрессора. Если можно применить систему TWIN, это всегда является лучшим решением, т.к. линия выравнивания по маслу и давлению уже установлена. 2.1. Высокая холодопроизводительность

Возможности использования одного компрессора при максимальной холодопроизводительности ограничены. Если холодопроизводительность необходимо увеличить, то можно использовать установки с параллельным соединением компрессоров, причем есть варианты, когда устанавливаются 3 компрессора. Известны даже установки с 5 компрессорами. Для того чтобы определить, сколько компрессоров можно соединить, очень важно установить точное выравнивание по маслу и давлению между их картерами. Небольшая разница давления в картере в установке, имеющей выравнивающий по маслу и давлению, минимизирует риск нарушения подачи масла во время работы.
Разница давления в картере не играет существенной роли для установок, имеющих систему регулирования уровня масла, по сравнению с установками, которые обеспечены выравнивающими трубопроводами по маслу и давлению в картере.

2.2. Идеальное регулирование производительности.

Самым простым способом регулирования производительности и экономии электроэнергии, является отключение компрессора от установки. Дополнительные преимущества такого метода регулирования производительности в том, что при этом диапазон рабочих параметров всей установки не изменяется. Но для установок, оснащенных функцией регулирования производительности, очень важно следить за циркуляцией и подачей масла при частичной нагрузке. Это означает, что максимально возможное снижение производительности будет ограничиваться возможностями подачи и циркуляции масла в системе. Необходимо следить за минимально допустимыми скоростями газа в трубах, также как и за ТРВ при частичной нагрузке, что выражается в поддержании достаточного перегрева всасываемого газа.

2.3. Несложный процесс разгруженного пуска.

Экономия энергии достигается простой задержкой пуска отдельных компрессоров, что значительно эффективнее пуска одного компрессора при полной нагрузке.

2.4. Работа в аварийном режиме.

При поломке одного из компрессоров система должна продолжать работать. Однако в результате такой поломки другие компрессоры также могут пострадать. В частности, в случае образования кислоты, необходимо принять меры к защите всей установки. В случае поломки компрессора, необходимо найти причину этого и выяснить, нужен ли срочный ремонт.

Количество масла, уносимого в холодильный контур, и количество возвращаемого масла не может поддерживаться на постоянном уровне для различных компрессоров в установке. Поэтому уровень масла между компрессорами должен выравниваться в области картера.

3.1. Выравнивание масла и давления.

Давления в картерах различны из-за возможных потерь в потоке внутри компрессоров и на линии всасывания на участке от коллектора на линии всасывания до компрессора. Такая разница между давлениями в картерах очень незначительна, но она оказывает серьезное влияние на уровень масла. Необходимое выравнивание уровня масла может быть достигнуто при выравнивании давления в картере, т.е. никаких перепадов по давлению в картерах соединенных компрессоров не должно быть. Необходимое выравнивание достигается путем соединения всех работающих компрессоров трубопроводом на уровне смотрового стекла. Чертеж данного соединения представлен в приложении. Этот выравнивающий трубопровод должен быть расположен строго горизонтально, и только половина его должна быть заполнена маслом для того, чтобы выравнивать давление без влияния на уровень масла. Диаметр этого выравнивающего трубопровода зависит от размеров корпуса компрессора. Однако становится очевидным, что увеличение диаметра трубопровода способствует более эффективному выравниванию давления хладагента и уровня масла в системе. Дополнительный соединительный трубопровод необходим для обеспечения выравнивания давления между картерами во всех возможных рабочих условиях. Выравнивающий трубопровод должен быть подключен к порту возврата масла. Диаметр трубопровода зависит от количества компрессоров и должен быть не меньше 10 мм.

3.2. Система регулирования уровня масла

Осуществление выравнивания уровня масла и давления хладагента между картерами компрессоров, требует тестирования и накопления опыта практической работы таких установок. Поэтому, мы рекомендуем использовать систему регулирования уровня масла для централей, установленных по месту, без предварительного теста.
В случае если объемные производительности или системы смазки (масляный насос/ разбрызгиватель) для компрессоров различны, необходимо использовать систему регулирования уровня масла для компрессоров, объединенных в одну централь.
Также это необходимо сделать, если для централей используются компрессоры DISCUS или стандартные. Т.к. перепад давления в картерах компрессоров и колебания уровня масла в системе могут быть чрезмерно высокими, используется линия выравнивания.
Эта регулирующая система включает в себя регулятор уровня масла, установленный на каждый компрессор, масло в который подается через маслоотделитель и масляный ресивер.
Проверенные системы регулирования уровня масла можно приобрести со склада.

3.3. Контроль уровня масла

Модельные ряды компрессоров DK, DL, DN выполнены таким образом, что смотровые стекла абсолютно герметичны.
При замене смотрового стекла на уравнительную линию, нужно установить смотровое стекло на выравнивающем трубопроводе. Система регулирования уровня масла, как показано в разделе, оборудована смотровым стеклом на каждом регуляторе уровня масла. Соответствующая проверка уровня масла возможна только в течение очень короткого времени (10 сек) после отключения компрессора (также как и в случае использования отдельных компрессоров). Такой факт очень важен для установок с трубопроводами выравнивания по маслу и давлению хладагента, как представлено в разделе 3.1, т.к. имеет место поток газа в линии выравнивания во время работы компрессоров, оказывающий влияние на уровень масла.

3.4. Коллектор на линии всасывания

Линии всасывания между испарителями и компрессорами должны соединяться с коллектором, в котором различные давление всасывания выравнивается. Коллектор на линии всасывания соединяется с компрессорами с помощью коротких, одинаковых и симметрично расположенных патрубков. Такая конструкция предпочтительна для выравнивания давления хладагента на входе в компрессор, что необходимо для выравнивания давления в картерах компрессоров. Обычно, чем ниже скорость в коллекторе, тем точнее будет выравнивание давления. Для того чтобы выравнивание количества возвращаемого масла происходило бы уже в коллекторе, нужно чтобы патрубки, входящие в коллектор, не располагались строго напротив выходящих патрубков. Компрессоры включаются и выключаются в соответствие с требуемой производительностью системы в целом. Однако может произойти неконтролируемое попадание жидкого хладагента в работающие компрессоры. Поэтому коллектор на всасывании должен одновременно выполнять функции и . Соответственно, каждый патрубок от коллектора к компрессору должен иметь определенную конфигурацию, а возврат масла осуществлялся через дополнительные отверстия или . Однако необходимо предотвратить попадание в отключенный компрессор жидкого хладагента через устройство для возврата масла.
Т.к. установки с параллельным соединением компрессоров имеют разветвленную систему трубопроводов, обычно используются фильтры на линии всасывания. Такие фильтры могут оснащаться как патронами-осушителями, так и использоваться в качестве грязеуловителей. Корпус фильтра устанавливается в систему во время первого монтажа перед коллектором на линии всасывания.
Таким образом, в зависимости от рабочих условий, можно устанавливать соответствующие фильтры, например, для поглощения кислоты из системы, если это необходимо.

3.4 Коллектор на линии нагнетания

В принципе, каждая рассмотренная здесь установка обладает функцией отключения и включения компрессоров, входящих в нее. В этих условиях в нагнетательной камере головок цилиндров отключенного (ых) компрессора (ов) может конденсироваться хладагент. Тогда головки цилиндров могут заполняться сжиженным хладагентом. Если компрессор снова запустить в работу, давление в области головок цилиндров может резко повыситься, что, вероятно, приведет к разрушению прокладки между сторонами всасывания и нагнетания головки цилиндра. Для того чтобы избежать этого, нагнетательный патрубок от компрессора должен опускаться под наклоном от него до коллектора. В этом случае вернется с головок цилиндров в коллектор на линии нагнетания. Следовательно, нагнетательные патрубки компрессора должны опускаться от него под уклоном.

3.5. Режим откачки

Для того чтобы избежать скопления жидкого хладагента в масле во время отключения компрессора, во многих случаях используется цикл откачки.
Данная рекомендация также относится к централям. Необходимо учитывать, однако, что уставка давления откачки на реле давления может быть достигнута только тогда, когда все компрессоры в системе постепенно отключатся. В случае работы даже одного компрессора вся сторона всасывания системы окажется под давлением работающего компрессора. Это давление кипения всегда должно быть выше давления откачки, которое устанавливается на реле низкого давления. Для централей, таким образом, процесс откачки часто должен поддерживаться с помощью нагревателей картера.
Как показано в техническом бюллетене № 3 производительность нагревателей картера ограничена. Поэтому централи лучше располагать в теплых помещениях.

Наиболее важным преимуществом централей является высокая холодопроизводительность (см. 2.1).
При увеличении производительности, система трубопроводов расширяется и разветвляется, что приводит к сложностям в регулировании и обслуживании, и к проблемам, связанным с возвратом масла. Поэтому рекомендуется устанавливать маслоотделители независимо от температуры кипения и типа хладагента. Далее, надо строго соблюдать правила проектирования и монтажа трубопроводов (см. Технический бюллетень № 06).
При монтаже в соответствие с пунктом 3.1, линия возврата масла от маслоотделителя должна быть соединена с коллектором на линии всасывания.
При использовании системы регулирования уровня масла в соответствие с пунктом 3.2 маслоотделитель уже включен в эту систему. Следовательно, линия возврата масла должна быть соединена с масляным ресивером. 3.8 Подача масла

Как отмечено в пункте 3.7, на возврат масла в таких установках будет влиять не только разветвленная система трубопроводов. Резкое регулирования давления, приводящие к изменению скорости газа на линии всасывания, также оказывают негативное влияние на возврат масла. В технических бюллетенях № 01 и № 06 рассматриваются конструкции трубопровода. Важно обратить внимание на то, что особенно серьезное внимание уделяется проблеме смазки. Таким образом, рекомендуется использовать те компрессоры, в которых регулирование смазки происходит автоматически. Все компрессоры с масляным насосом и реле контроля смазки отвечают данному требованию и пригодны для использования их в централях.

3.9 компрессора

Охлаждение компрессоров в централи должно проходить в соответствие с Инструкцией по обслуживанию данного и компрессорно- конденсаторных агрегатов.

3.10 Монтаж

Строго горизонтальное расположение линии выравнивания по маслу и давлению хладагента может быть достигнуто, если компрессоры расположить на единой раме. Смотровые стекла, установленные на линии выравнивания по маслу и давлению хладагента, могут быть использованы в качестве направляющих для сохранения строгой горизонтальности расположения линии. Кроме того, компрессоры необходимо установить как можно ближе друг к другу, для того чтобы линия выравнивания была как можно короче. Чем короче трубы, тем точнее выравнивание.
В основном для работы в централях должны использоваться компрессоры только одного типоразмера (например, стандартные компрессоры со стандартными, компрессоры типа DISCUS с компрессорами того же типа).
Если к системе предъявляются повышенные требования по виброизоляции, то рама должна устанавливаться на вибропоглотители. Конечно, соединительные патрубки на линии всасывания и нагнетания должны быть достаточно упругими.

Представим, что патрубки двух нагнетающих компрессоров установлены параллельно (рис. 21.10). При этом компрессор С1 работает, а С2 остановлен. Согласно данной схеме часть масла, нагнетаемая С1, накапливается в головке компрессора С2, куда попадает и конденсируется хладагент. При длительной остановке С2 температура его головки равна температуре окружающей среды.

При негерметичности нагнетающего клапана С2, из-за перепада в нем давления часть жидкости (поз. 1) попадает в полость цилиндра С2 и при запуске возникает высокая вероятность гидроудара. Чтобы препятствовать данному явлению, необходимо соединять нагнетающие патрубки двух параллельно смонтированных компрессоров согласно указанной схеме (рис. 21.11).

В некоторых случаях установку производят с лирообразным компенсатором (рис. 21.12), проходящим по земле. Данный компенсатор (поз.1) находится в непосредственной близости от компрессоров и его температура равна температуре окружающей среды. Он является жидкостной ловушкой, одинаково работающей как к маслу, так и к жидкому хладагенту, а также позволяет ослабить вибрации и компенсировать тепловые деформации труб. Отдельное внимание следует обратить на выравнивания уровня масла (поз.2).

Если рассмотренные нами способы соединения практически полностью исключают накопление масла в головке остановленного компрессора, то они не исключают попадания в нее паров хладагента и их . Для большей уверенности на нагнетающих патрубках данных компрессов предусматривают установку обратных клапанов. Но данный способ имеет свои негативные последствия, и чтобы достичь желаемого результата требуется предпринять некоторые меры безопасности.

Устанавливаемые обратные клапаны должны иметь наименьшее гидросопротивление, поскольку увеличивая потери давления на нагнетающей магистрали, они станут причиной увеличения температуры нагнетающих паров, следовательно, и уменьшения холодопроизводительности. Производить монтаж обратного клапана следует с особой аккуратностью и тщательностью. Если сторонняя мельчайшая частица (капля припоя, медная стружка…) окажется под седлом обратного клапана это нарушит его герметичность и работоспособность.

Другой особенностью обратных клапанов является способность «хлопать» в результате пульсации давления нагнетания или из-за близкой установки относительно нагнетающего патрубка, что в результате может привести к их быстрому разрушению. Исходя из этого, обратный клапан на магистрали нагнетания для большей эффективности устанавливают подальше от компрессора (желательно и после глушителя). Это дает возможность задерживать сторонние частицы и уменьшать пульсации давления.

Установку глушителя необходимо производить таким образом, чтобы масло могло свободно циркулировать. Для этого на его наружной поверхности выгравировано слово «Тор» (Вверх). При монтаже обратного клапана и глушителя также необходимо учитывать направление жидкости и следовать инструкции разработчика (рис. 21.13).

Поломка клапанов по причине гидроударов относится к неисправности типа «слишком слабый компрессор».

Бюджетные модели воздушных компрессоров не всегда комплектуются реле давлением, поскольку аналогичные приборы устанавливаются на ресивере. Поэтому производители данной техники считают, что визуального контроля давления, развиваемого компрессором на основании показаний манометров вполне достаточно. Вместе с тем при длительных работах, во избежание перегрева двигателя целесообразно устанавливать реле давления и на компрессор. Тогда включение и выключение привода будет выполняться автоматически.

Устройство и схема реле давления к компрессору

Все реле давления компрессора подразделяются на два типа:

  • Выключающие электродвигатель компрессора при превышении давления воздуха в сети выше допустимых пределов (такие конструкции называют нормально разомкнутыми);
  • Включающие электродвигатель компрессора при уменьшении давления в сети ниже допустимых пределов (такие конструкции называют нормально замкнутыми).

Исполнительным элементом реле давления для компрессора являются пружины, сила сжатия которых изменяется специальным винтом. В заводских настройках сила сжатия пружин обычно устанавливается на давление в пневмосети от 4 до 6 ат, о чём сообщается в инструкции пользователя. Поскольку жёсткость и гибкость пружинных элементов зависят от температуры окружающего воздуха, то все конструкции промышленных прессостатов рассчитаны на устойчивую работу в диапазоне температур от -5 до +80ºС.

Подборка компрессоров с реле давления

В конструкцию реле давления входят два обязательных подузла – разгрузочный клапан и механический выключатель. Разгрузочный клапан подключается к воздухоподводящей магистрали между ресивером и компрессором. Он управляет работой электродвигателя. Если привод компрессора отключить, то разгрузочный клапан, имеющийся на ресивере, сбрасывает излишек сжатого воздуха (до 2 ат) в атмосферу, разгружая тем самым подвижные части компрессора от избыточного усилия, которое им придётся развить при повторном включении компрессора. Тем самым предотвращается критическая перегрузка двигателя по допустимому крутящему моменту. Когда разгруженный двигатель запускается, клапан запирается, и не создаёт лишней нагрузки на привод.

Механический выключатель исполняет функцию stand by, предотвращая случайный пуск двигателя. После нажатия кнопки привод включается, и компрессор действует в автоматическом режиме. При отключении кнопки двигатель компрессора не запустится даже в том случае, когда давление в напорной пневмосети ниже требуемого.

С целью повышения безопасности работ промышленные конструкции реле давления компрессора оснащаются также предохранительным клапаном. Он полезен, например, при внезапной остановке двигателя, поломке поршня или иной нештатной ситуации.

Опционально в корпус прессостата может быть вмонтировано и тепловое реле, при помощи которого мониторится сила тока в первичной цепи. Если по каким-либо причинам этот параметр возрастает, то, во избежание перегрева и последующего пробоя обмоток, тепловое реле выключит электродвигатель.

Как подключить и настроить реле давления?

В общей принципиальной схеме компрессорной установки реле давления располагают между разгрузочным клапаном и вторичной цепью управления двигателем. Обычно прессостат снабжается четырьмя резьбовыми головками. Одна их них предназначена для присоединения устройства к ресиверу, а вторая – для подключения контрольного манометра. Один из остальных разъёмов может быть использован для установки предохранительного клапана, а на оставшийся ставится обычная резьбовая заглушка с резьбой ¼ дюйма. Наличие свободного разъёма позволяет устанавливать контрольный манометр в месте, удобном пользователю.

Подключение прессостата ведут в следующей последовательности:

  1. Присоединяют устройство к разгрузочному клапану ресивера.
  2. Устанавливают контрольный манометр (если в нём нет необходимости, то резьбовой вход также заглушают).
  3. Подключают к контактам клеммы цепи управления электродвигателем (с учётом выбранной схемы подключения – к нормально разомкнутым, либо нормально замкнутым контактам). При колебаниях напряжения в сети подключение выполняют не напрямую, а через сетевой фильтр. Это требуется также и тогда, когда мощность, на которую рассчитаны контакты, превышает мощность тока нагрузки двигателя.
  4. При необходимости регулировочными винтами настраивают реле на нужные значения давления сжатого воздуха.


При подключении необходимо проверить, соответствует ли напряжение в сети заводским настройкам реле давления компрессора. Например, в трёхфазной сети напряжением 380 В, реле должно иметь трёхконтактную группу (две фазы+ноль), а для напряжения 220 В – двухконтактную.

Настройку производят при заполненном не менее, чем на две трети ресивере. Для выполнения этой операции реле отключают от электросети, и, сняв верхнюю крышку, изменяют сжатие двух пружин. Регулировочный винт, на который насажена ось пружины большего диаметра, отвечает за верхний предел рабочего давления. На плате рядом с ним обычно указывается общепринятый символ давления (Р – pressure), а также указывается направление вращения винта, которым эта давление уменьшается или увеличивается. Второй, меньшего размера, регулировочный винт отвечает за установку необходимого диапазона (разности) давления. Он маркируется условным обозначением ΔР, и также снабжается указателем направления вращения.

Для сокращения времени настройки, в некоторых конструкциях регулировочный винт для изменения верхнего предела давления выводится наружу корпуса прессостата. Контроль результата производится по показаниям манометра.

Реле давления своими руками

При известных навыках, а также наличия исправного термореле от списанного холодильника, прессостат можно изготовить и самостоятельно. Правда, особыми практическими возможностями он обладать не будет, поскольку способность держать верхнее давление ограничивается прочностью резинового сильфона.

Термореле типа KTS 011 наиболее удобны для переделки в реле давления компрессора, поскольку обладают строго обратной последовательностью своего срабатывания: при увеличении температуры в холодильной камере реле включается, а при снижении – отключается.

Суть и последовательность проведения работ следующая. После вскрытия крышки устанавливают расположение нужной группы контактов, для чего достаточно прозвонить цепь. Вначале дорабатывается соединение термореле с компрессором. Для этого выходной патрубок вместе с контрольным манометром присоединяются к разгрузочному клапану, а контактные группы – к клеммам цепи электродвигателя. Под крышкой термореле обнаружится регулировочный винт. При включении компрессора (ресивер должен быть заполнен не более, чем на 10…15 % своего номинального объёма) последовательно выполняют вращение винта, контролируя результат по показаниям манометра. Для установки нижнего положения (определяющего минимальное давление воздуха) придётся постепенно передвигать шток лицевой кнопки. Для этого крышка устанавливается на место, а регулировка фактически производится вслепую, поскольку второй манометр подключить уже некуда.

Из соображений безопасности диапазон регулировки давлений при помощи такого термореле не может быть более 1…6 ат, однако, используя приборы с более прочным сильфоном, можно увеличить верхний диапазон до 8…10 ат, чего в большинстве случаев бывает вполне достаточно.

После проверки работоспособности реле обрезают капиллярную трубку, и выпускают находившийся там хладагент. Конец от трубки впаивается в разгрузочный клапан.

Далее выполняются работы по подключению самодельного прессостата к схеме управления компрессором: при помощи гайки реле присоединяется к плате управления, на штоке выполняется резьба, и накручивается контргайка, вращая которую, можно регулировать пределы изменения давления воздуха.

Учитывая, что контактная группа любого термореле от холодильника рассчитана за достаточно большие токи, то таким способом можно коммутировать цепи значительной мощности, в том числе – и вторичные цепи управления двигателем компрессора.

Поясните пожалуйста, почему в KT-602-1 описано простейшее параллельное соединение картеров двух компрессоров трубкой для выравнивания уровня масла без применения регулятора уровня масла, и ничего не сказано об уравнивание давления газов, т.е. предполагается трубка которая монтируется выше уровня масла и объединяет два компрессора уравнивая при этом давление газов. И ответьте пожалуйста насколько надёжным будет управление последовательной работы компрессоров без "логики" посредством РД, т.е. один из компрессоров будет всегда включаться первым и соответственно работать больше. Спасибо!

07 07 2012 // Наиль Алекперов

Ответ:

А Вы уверены, что видели эту схему именно в ? Эта инструкция по параллельному соединению компрессоров серий OCTAGON. Для них соединение картеров какими-либо трубками вообще не желательно.

Кстати, эта инструкция уже обновлена до KT-602-2 Parallel compounding of OCTAGON compressors.

Пришлите пжста схему, которая Вас заинтересовала. Обсудим.

Необходимо соединить два компрессора 4DC-5.2 в одном агрегате для минусовой камеры (R404a) потребитель одна точка(испаритель) Заказчик не желает оборудовать компрессора регуляторами уровня масла и другими доп. примочками(жук ещё тот), как же быть и как выходить с этой ситуации заранее благодарю

09 07 2012 // Наиль Алекперов

Ответ:

Самое проавильное решение для Вашей установке - это тандем 44DC-10.2 , а м.б и уже собранный агрегат на базе тандема LH124/44DC-10.2

Если у Вас в установке протяжённость труб небольшая, есть все необходимые уклоны и маслоподъёмные петли, регулярно проводится оттайка испарителя, то, даже при параллельном подключении двух 4DC-5.2, нет необходимости устанавливать ни маслоотделитель, ни системы регулировангия уровня масла в картерах, ни какие либо трубки выравнивания, соединяющих картеры компрессоров. Нужно только сделать симметричный коллектор всасывания, см. инструкцию.

Re (1): Параллельное соединение

Простите меня за назойливость, но как же быть при простое одного из компрессоров? Вы думаете что при правильной симметрии коллектора итд я смогу избежать уноса масла из неработающего компрессора? Протяжённость трубопровода всего 4 метра, контроллер с функцией авто оттайки, предполагалось установить маслоотделитель на нагнетании и жидкостный отделитель на всасе, последовательное включение компрессоров регулируется РД, включение и выключение вентиляторов на конденсаторе тоже посредством РД. Благодарю

09 07 2012 // Наиль Алекперов

Ответ:

Да, как в тандеме, так и в параллельном соединении при правильной симметрии коллектора при простое одного из компрессоров уноса масла из него не происходит - куда?

Если правильно подобран испаритель, т.е. его производительность соответствует производительности компрессора, если проводятся регулярные оттайки испарителя, т.е. не допускается его полное обмерзание, если используется ТРВ с точкой МОР или ЭРВ, с контролем перегрева на всех режимах работы, то заливов компрессоров жидким хладагентом не происходит, т.о. аккумулятора жидкости на всасывании устанавливать не требуется.

Масло циркулирует по системе - ничего страшного в этом нет. В Вашей установке короткий и неразветвлённый контур, т.е. масло не может где-то залечь. Зачем тогда тратиться на маслоотделитель, масляный ресивер и систему регулирования уровней масла в картерах компрессоров?

Re (3): Параллельное соединение

По вашему совету собрали мы с ребятками агрегат из двух компрессоров битцер 7,2 без регуляторов уровня масла а масло всеравно куда то уходит особенно с первого компрессора давление на всасе высокое 2,5 на температурный режим не выходим, сдается мне маслом испаритель заливает?! прикладываю фото Помогите пожалуйста!

18 07 2012 // Наиль Алекперов

Ответ:

Спасибо за Ваше фото

Всасывающий коллектор у вас получился симпатичный. А нагнетание получилось страшненьким!

Пример правильного расположения патрубков нагнетания см. на фото и в ответе на вопрос