Покровная ткань вторичного происхождения. Выделительные ткани В

Ткань – это устойчивый комплекс клеток, обладающих одним или несколькими сходными признаками: физиологическими, морфологическими, топографическими и общностью происхождения.

Существуют различные классификации тканей, наиболее распространенно деление их по анатомо-физиологическому признаку , выделяют 6 групп:

1. образовательные (меристемы)

2. покровные

3. механические

4. проводящие

5. основные

6. выделительные

Ткани, обладающие полифункциональностью и неоднородностью строения клеток, называют сложными . Например, кожица (эпидерма), выполняет защитную функцию, но также участвует в газообмене и транспирации.

Ткани, состоящие из одинаковых по строению и функциям клеток, называют простыми , например, механическая ткань колленхима, запасная ткань эндосперм и др.

Наряду с анатомо-физиологической существует и онтогенетическая классификация тканей, основанная на их происхождении. По этой классификации ткани делят на первичные и вторичные .

Первичные ткани (эпидерма, колленхима, склеренхима, ассимилирующая ткань, эпиблема) представляют собой непосредственные производные меристемы (образовательной ткани), находящейся на верхушке побега и в кончике корня, а также специализированной меристемы – прокамбия (первичная ксилема, первичная флоэма).

Ко вторичным относят ткани, возникающие при утолщении стебля и корня. Это производные камбия (вторичная ксилема и флоэма), феллогена (пробка, феллодерма, чечевички) и др. Вторичные ткани свойственны не всем растениям, их нет у мхов, современных хвощей, плаунов, папоротников, а из покрытосеменных – у большинства однодольных. Мощное развитие вторичных тканей, главным образом, древесины и луба, характерно для древесных.

2. Образовательные ткани.

Процессы роста у растений сосредоточены в определенных зонах тела растения, где находятся долго сохраняющие способность к делению ткани – меристемы , состоящие из очень тонкостенных клеток представляющих собой изодиаметрические многогранники, не разделенные межклетниками.

Клетка меристемы характеризуется следующими особенностями:

1. она имеет крупное ядро, занимающее около половины ее объема, в ядерной оболочке много пор, ее (ядерной оболочки) мембрана участвует в образовании эндоплазматической сети.

2. в гиалоплазме много диффузно расположенных рибосом.

3. клетка имеет пропластиды с немногочисленными тилакоидами стромы, митохондрии и диктиосомы.

4. вакуоли мелкие и их немного.

5. плазмалемма хорошо выражена.

6. соседние клетки соеденины плазмадесмами, они расположены более или менее диффузно.

Такое строение свойственно клеткам верхушечных меристем.

Меристемы, образующие проводящие ткани, – прокамбий и камбий – состоят из клеток прозенхимной формы. В поперечном сечении клетки прокамбия многоугольные, клетки камбия – более или менее прямоугольные, иногда почти квадратные. И те, и другие имеют крупные вакуоли.

Из первоначально однородных меристематических клеток возникают в результате клеточной дифференцировки различные по строению и функциям клетки остальных тканей. К делению, как правило, они не способны. Поэтому в отличие от образовательных все прочие ткани называют постоянными .

Клеткам меристем свойственно дифференцированное , или неравное деление . Клетка митотически делится на 2: одна из них остается истинной клеткой меристемы, а другая, поделившись один или несколько раз, образует клетки, вскоре приступающие к дифференциации. Не все клетки меристемы обладают одинаковой митотической активностью. В связи с этим в ней выделяют инициальные клетки и их производные, от которых инициальные клетки могут отличаться формой, более крупными размерами, степенью вакуолизации. Меристемы могут сохраняться очень долго, в течение всей жизни растения (у некоторых деревьев несколько тысяч лет).

Классификация меристем.

В зависимости от происхождения различают первичные и вторичные меристемы.

Первичные меристемы (промеристемы). Происходят непосредственно из меристемы зародыша, развивающегося из зиготы, и обладают способностью к делению изначально.

Вторичное строение стебля характерно в основном для многолетних двудольных и голосеменных растений. Оно может быть двух, трех и четырех типов.

Анатомическое строение стеблей травянистых двудольных растений . Выделяют пучковое, переходное и непучковое вторичное строение стебля.

Проводящие ткани расположены кольцом вокруг сердцевины; центральный цилиндр имеет пучковое или непучковое строение; проводящие пучки коллатеральные или биколлатеральные, открытые; пучки разделены сердцевинными лучами, состоящими из паренхимы; механические ткани расположены по периферии; склеренхима входит в состав перицикла, колленхима - в состав первичной коры. У двудольных и голосеменных различают первичную и вторичную структуры. Первичная структура формируется в результате деятельности апикальной меристемы, а вторичная - с момента деятельности камбия. У двудольных растений первичное строение стебля очень недолговечно и с началом деятельности камбия образуется вторичная структура, которая может быть трех типов: пучковая, переходная и непучковая.

Пучковое строение характерно для растений, прокамбий которых закладывается пучками (клевер, тыква, кирказон и др., см. рис. 90). Из прокамбия возникает пучковый камбий, в результате деятельности которого образуются вторичные флоэма и ксилема. Клетки основной паренхимы, расположенные между проводящими пучками, формируют межпучковый камбий, который дифференцируется в паренхиму сердцевинных лучей. Таким образом, пучковый и межпучковый камбий, соединяясь, образуя сплошное камбиальное кольцо, но пучковое строение сохраняется. Проводящие пучки располагаются по кругу в один ряд. Пучковое строение

большого прироста стеблю не дает, так как камбий быстро замирает. В стебле пучкового строения имеется эпидерма с небольшим числом устьиц, первичная кора, наружный слой которой - механическая ткань колленхима, а глубже - хлорофиллоносная паренхима. Внутренний слой первичной коры - эндодерма, состоящая из более крупных клеток с крахмальными зернами (крахмалоносное влагалище). Внутрь от первичной коры расположен центральный осевой цилиндр, наружный слой которого составлен, как правило, однослойным перициклом из механической ткани склеренхимы.

Переходное строение наблюдается в том случае, когда первичное строение стебля пучковое, а вторичные элементы формируются из пучкового и межпучкового камбия. В результате появляются новые проводящие пучки, занимающие промежуточное положение между первыми пучками. Постепенно пучки сливаются в одно сплошное кольцо цилиндра из флоэмы, камбия и ксилемы. Такое строение имеют многие двудольные травянистые растения (валериана, клещевина, подсолнечник и др., см. рис. 91). С поверхности стебель покрыт эпидермой, вглубь расположены первичная кора, а затем центральный осевой цилиндр. Первичная кора снаружи представлена пластинчатой колленхимой с хлоропластами, затем в глубине идет тонкостенная паренхима с несколько меньшим количеством хлоропластов. Внутренний слой первичной коры выстилает крахмалоносное влагалище, или эндодерма. Ковнутри от первичной коры находится слой перицикла, представленный паренхимными клетками, способными к меристематическому делению. Затем в основной паренхиме осевого цилиндра по кругу размещаются проводящие пучки коллатерального типа. Вторичное утолщение стебля подсолнечника происходит за счет деятельности первичной и вторичной меристемы. Первичная меристема представлена пучковым камбием между флоэмой и ксилемой. Вторичная меристема, или межпучковой камбий, формируется из паренхимных клеток сердцевинных лучей, которые в результате деятельности пучкового камбия превращаются в делящиеся. Межпучковый камбий, кроме того, образует новые пучки вторичного происхождения. Старые и новые пучки разрастаются, ксилема и флоэма пучков сливаются, и постепенно появляется непучковое строение.

Непучковое строение получается из сплошного прокамбиального цилиндра, закладывающегося под конусом нарастания. Прокамбиальный цилиндр откладывает элементы протоксилемы и метаксилемы внутрь стебля, а в дальнейшем работает как камбиальное кольцо, которое внутрь от себя откладывает ксилему, кнаружи - флоэму. Таково строение многих древесных и некоторых многолетних травянистых растений (см. рис. 92). Однако в стеблях травянистых растений камбий функционирует в течение одного

вегетационного периода - с весны до осени. Осенью все камбиальные клетки преобразуются в клетки постоянных тканей, а у древесных растений камбий продолжает работать в течение всей жизни, благодаря чему стебли их утолщаются и приобретают характерные особенности в строении, отсутствующие у травянистых растений.

Анатомическое строение многолетних стеблей древесных растений . Рассмотрим его на примере стебля липы (рис. 92). Годичные побеги липы покрыты эпидермой. К осени они одревесневают и эпидерма сменяется пробкой. В течение вегетационного периода под эпидермой закладывается пробковый камбий, который

снаружи формирует пробку, а внутрь - клетки феллодермы. Эти три покровные ткани образуют покровный комплекс перидермы. Клетки эпидермы постепенно в течение 2-3 лет сшелушиваются и отмирают. Под перидермой расположена первичная кора. Наружные слои представлены клетками пластинчатой хлорофиллоносной колленхимы, затем идет хлорофиллоносная паренхима и слабо выраженная эндодерма. Перицикл представлен участками склеренхимы, снаружи защищающей флоэму.

Большую часть стебля составляют ткани, образованные деятельностью камбия. Граница коры и древесины проходит по камбию. Все ткани, лежащие кнаружи от камбия, называют корой . Кора бывает первичная и вторичная. Первичная уже описана, вторичную кору составляет флоэма, или луб, и сердцевинные лучи. Флоэма трапециевидной формы, а сердцевинные лучи представлены в виде треугольников, вершины которых сходятся к центру стебля до сердцевины.

Сердцевинные лучи насквозь пронизывают древесину. Это первичные сердцевинные лучи, по ним в радиальном направлении продвигаются вода и органические вещества. Сердцевинные лучи представлены паренхимными клетками, внутри которых к осени откладываются запасные питательные вещества (крахмал), расходуемые весной на рост молодых побегов. Камбий образует и вторичные сердцевинные лучи, но они не доходят до сердцевины, теряясь в древесине.

Во флоэме чередуются прослойки твердого луба (лубяные волокна) и мягкого (живые тонкостенные элементы). Лубяные (склеренхимные) волокна луба представлены мертвыми прозенхимными клетками с толстыми одревесневшими стенками. Мягкий луб состоит из ситовидных трубок с клетками-спутницами (проводящая ткань) и лубяной паренхимы, в которой накапливаются питательные вещества (углеводы, жирные масла и др.). Весной эти вещества расходуются на рост побегов. По ситовидным трубкам передвигаются органические вещества, образованные в результате фотосинтеза. Весной при порезе коры сок вытекает наружу. Ближе к камбию расположены более молодые участки луба. Более молодые и широкие клетки луба накладываются на более старые периферийные узкие клетки, тем самым создавая трапециевидный вид луба. Камбий представлен одним плотным кольцом из тонкостенных прямоугольных клеток с крупным ядром и цитоплазмой. Осенью клетки камбия становятся толстостенными, и его деятельность прекращается.

К центру стебля внутрь от камбия образуется древесина, состоящая из сосудов (трахей), трахеид, древесинной паренхимы и древесинной склеренхимы (либриформ) . Либриформ представляет собой совокупность узких толстостенных и одревесневших клеток механической ткани. Древесина откладывается в виде годичных

колец (сочетание весенних и осенних элементов древесины) более широких весной и летом и более узких осенью, а также в засушливое лето. На поперечном спиле дерева по числу годичных колец можно определить относительный возраст дерева. Весной в период сокодвижения по сосудам древесины поднимается вода с растворенными минеральными солями.

В центральной части стебля расположена сердцевина, состоящая из паренхимных клеток и окруженная мелкими сосудами первичной древесины.

Анатомическое строение стеблей голосеменных растений . Анатомическое строение очень сходно с анатомическим строением двудольных древесных растений, однако есть и некоторые различия. В коровой части и древесине хвойных (ель, пихта, сосна и др.) образуются смоляные ходы (рис. 93). У кипарисовых смола накапливается в крупных клетках коровой паренхимы или в сердцевинных лучах. Флоэма сосны состоит из ситовидных трубок и лубяной паренхимы; ситовидные клетки флоэмы без клеток-спутниц и лубяных волокон. Древесина сосудов не имеет и состоит из одних

трахеид, расположенных ровными рядами и имеющих многочисленные окаймленные поры. Древесинная паренхима и механические волокна, как правило, отсутствуют, границы между приростами весенней и летней древесины четко выражены и хорошо видны годичные кольца. Благодаря сообщению вертикальных и горизонтальных смоляных ходов у хвойных выработалась единая смоло-отделительная система . Смоляные ходы сосны изнутри выстланы тонкостенными паренхимными клетками, составляющими эпителий, выделяющий смолу в смоляной ход.

Побег имеет систему меристем (образовательных тканей), поддерживающих нарастание тканей в дли­ну и толщину. Рост побега в длину осуществляется за счет верхушечной (апекальной ) и вставочных (интеркалярных ) меристем, а в толщину – за счет боковых мери­стем : прокамбия, камбия, феллогена и отчасти перицикла. На начальных этапах развития побега складывается первичная анатомическая структура стебля, со­храняющаяся у однодольных и споровых растений в течение всей жизни. У двудольных и голосемен­ных первичная структура довольно быстро нарушается в результате разного рода вторичных изменений (главным образом благодаря деятельности камбия и феллогена) и в итоге формируется вторичное строение стебля.

Первичная структура стебля складывается по мере дифференциации кле­ток верхушечной (апекалъной) меристемы. Самые наружные ее слои преобразу­ются в протодерму, клетки которой формируют первичную покровную ткань – эпидерму. На уровне первых листовых примордиев (зачатков листьев) из клеток расположенных на периферии и в центре апекса формируется основная меристе­ма, которая в свою очередь образует сердцевину и первичную кору. Между ними сохраняются несколько рядов активных меристематических клеток, располагаю­щихся кольцом, которое называется образовательным. Клетки образовательного кольца в основании молодых зачатков листьев дают начало первичной боковой меристеме – прокамбию (в виде пучков или сплошным кольцом). У многих дву­дольных клетки образовательного кольца, расположенные между тяжами прокам­бия дифференцируются позднее в паренхимные элементы – сердцевинные лучи, соединяющие сердцевину с первичной корой. В стеблях травянистых двудольных растений клетки образовательного кольца, не участвующие в образовании про­камбия, дают начало другой меристеме – перициклу, который дает начало парен­химе или склеренхиме.

Прокамбий является предшественником первичных проводящих тканей: пер­вичной флоэмы и первичной ксилемы. Флоэма начинает формироваться раньше ксилемы. Она закладывается в наружных частях прокамбиальных тяжей или прокамбиального кольца и развивается центростремительно. Ксилема закладывается во внутренних участках прокамбия и развивается центробежно – навстречу фло­эме.

Образовавшиеся из прокамбия первичные флоэма и ксилема составляют ос­нову осевого (центрального) цилиндра или стелы.

Вся стела, занимающая центральную часть стебля, состоит из проводящих тканей , сердцевины (иногда она разрушается), перицикла (если он имеется) и тех постоянных тканей, которые из него возникают (паренхима и склеренхима ). Сердцевина располагается внутрь от проводящей ткани и обычно состоит из отно­сительно тонкостенных паренхимных клеток. В ней часто откладываются запас­ные питательные вещества. Иногда часть сердцевины разрушается и образуется полость .


Для большинства двудольных характерна эустела – стела, главным компо­нентом которой являются расположенные кольцом проводящие пучки (рис. 6.8). У многих древесных растений стела непучкового строения (флоэма и ксилема располагаются сплошным кольцом вокруг кольца прокамбия и позднее камбия) (рис. 6.9).

1. Переход стебля ко вторичному строению.

Во многих случаях первичного строения стебля оказывается недостаточно. Для осуществления жизнедеятельности растению, особенно многолетнему, необходимы дополнительные проводящие и механические элементы, а также лучшая поверхностная защита. Поэтому у многих растений происходит переход ко вторичному строению стебля.

У разных растений этот переход осуществляется по-разному., но в целом, существует 2 основных типа перехода: полный и неполный .

1. Полный переход характерен, в основном, для древесных растений. При полном переходе закладываются и работают две вторичные меристемы: камбий и феллоген .

А) в первичной коре закладывается феллоген и формирует перидерму. Эпидерма отмирает.

Б) в центральном цилиндре между флоэмой и ксилемой закладывается камбий и формирует вторичную флоэму и вторичную ксилему.

Т.о., при полном переходе изменяются все 3 зоны первичного стебля. Первичная кора частично разрушается, а стела сильно трансформируется, эпидерма отмирает.

2. Неполный переход характерен для некоторых травянистых растений. Закладывается только одна меристема – камбий , изменяется только центральный цилиндр, а первичная кора и эпидерма остаются без изменения.

Камбий обычно возникает из остатков прокамбия, но иногда из слабо дифференцированных паренхимных клеток.

Большинство клеток камбия прозенхимные, заострённые на концах. Одной своей плоской (широкой) стороной эти клетки обращены внутрь, к ксилеме, другой – наружу, к флоэме. Боковыми стенками клетки камбия смыкаются друг с другом.

Деление клеток камбия происходит тангентально, в двух направлениях, параллельно поверхности плоских сторон. После деления, одна из дочерних клеток сохраняет способность к повторным делениям (инициальная), а другая может ещё разделиться только 1-2 раза, но судьба её производных предрешена. Если они находятся со стороны ксилемы, то превращаются в элементы ксилемы, а если со стороны флоэмы, то в элементы флоэмы.

Камбиальная зона – зона недифференцированных и делящихся клеток имеет толщину до нескольких миллиметров. Однако, истинных инициалей имеется только один слой. У некоторых деревьев инициали камбия сохраняют жизнеспособность до нескольких тысяч лет.

Кроме вытянутых вдоль стебля веретеновидных клеток в камбии есть короткие лучевые инициали, дающие начало лубодревесинным паренхимным лучам.

В зависимости от исходного типа центрального цилиндра у разных растений, различают несколько способов перехода ко вторичному строению.

1. При сплошном типе центрального цилиндра между флоэмой и ксилемой возникает камбий и формирует сплошное кольцо вторичной флоэмы и ксилемы. Тип центрального цилиндра не меняется. Характерен в основном для деревьев.

2. При пучковом типе центрального цилиндра могут быть различные варианты:

а) камбий возникает сплошным кольцом:

1а. И пучковый и межпучковый камбий формируют вторичную флоэму и ксилему. Тип центрального цилиндра из пучкового становится сплошным. Характерен, в основном, для деревьев.

2а. Пучковый камбий формирует вторичную флоэму и ксилему, а межпучковый – склеренхиму. Тип центрального цилиндра остаётся пучковым, но пучки соединены слоем склеренхимы (напр., у клевера).

3а. Пучковый камбий формирует вторичную флоэму и ксилему, а межпучковый – паренхиму и дополнительные вторичные пучки (напр., у подсолнечника).

4а. Пучковый камбий формирует вторичную флоэму и ксилему, а межпучковый – паренхиму сердцевинных лучей. Тип центрального цилиндра не меняется.

б) возникает только пучковый камбий и формирует вторичную флоэму и ксилему, утолщая пучки.

У однодольных камбий не возникает совсем и остаётся первичное строение. У ряда древесных однодольных (пальмы, драцены и др.) вторичное строение формируется за счёт особой меристемы, возникающей вне проводящих пучков и образующей дополнительные пучки.

2. Вторичное строение стеблей древесных растений.

У древесных растений откладывается больше элементов ксилемы, чем флоэмы, поэтому, по объёму в стволе древесина (ксилема) преобладает (0,9 всего объёма ствола).

Т.о., на поперечном срезе ствола древесных растений чётко видны следующие слои: 1. Вторичная кора

2. Древесина

3. Между древесиной и корой имеется прослойка камбия

4. У молодых деревьев в центре стебля некоторое время

сохраняется сердцевина.

1. Вторичная кора – это все слои клеток выше камбия. Вторичная кора имеет сложное гистологическое строение.

В её состав входят: перидерма, остатки первичной коры , сохраняющиеся какое-то время, а затем входящие в состав корки, остатки первичной флоэмы, луб (вторичная флоэма).

Луб (вторичная флоэма) имеет сложное строение. Он образуется камбием и состоит из элементов двух систем: вертикальной и горизонтальной (радиальной). К вертикальной системе относятся ситовидные трубки с клетками спутницами и вертикальные тяжи лубяной паренхимы (мягкий луб), а также лубяные волокна (твёрдый луб). Лубяные волокна расположены слоями, а между ними, под их защитой, находятся прослойки мягкого луба. У многих растений (например, липа), эти чередующиеся прослойки имеют вид трапеций.

К горизонтальной системе относятся паренхимные клетки, образующие лубяную часть паренхимных лучей. По ним в радиальном направлении циркулируют газы и различные запасные вещества.

Основная функция луба: проведение органических веществ (нисходящий ток), который осуществляют ситовидные трубки. Кроме того, лубяные волокна луба выполняют механическую функцию (гибкость и упругость), а паренхима – запасающую функцию.

Так как стебель постоянно нарастает в толщину за счёт работы камбия, то кора всё дальше отодвигается от центра и при этом испытывает два типа нагрузок: 1) на растяжение по окружности; 2) сдавливание в радиальном направлении.

На первый вид нагрузок луб отвечает тем, что живые паренхимные клетки лучей сильно разрастаются (подвергаются дилатации), такие лучи имеют вид треугольников, обращённых вершинами к камбию (так называемая дилатационная паренхима).

Второй вид нагрузок (сжатие в радиальном направлении) приводит к тому, что проводящие элементы быстро теряют способность к проведению веществ, так как клетки их сдавливаются и отмирают. Лишь у некоторых деревьев (напр. у липы) они способны работать несколько лет (обычно один сезон). На смену им камбий каждый год образует новые проводящие элементы. Т.о, зона проведения в лубе очень тонкая, толщиной 1-2 мм и находится около камбия.

2. Древесина (вторичная ксилема). Составляет основную массу вторичного стебля. Значение её огромно как для самого растения, так и для человека, поэтому не случайно, есть целый раздел анатомии растений, посвящённый изучению строения древесины.

Строение древесины покрытосеменных достаточно сложно. Большая часть её клеток функционирует в мёртвом состоянии. В её составе, так же как и в лубе, есть две системы элементов: горизонтальные и вертикальные.

К горизонтальным элементам относятся в первую очередь сердцевинные паренхимные лучи (первичные и вторичные, полностью образованные камбием). Они обеспечивают связь внутренних слоёв с наружными и с корой.

К вертикальным элементам относятся: сосуды , трахеиды , древесные волокна (либриформ) и различные промежуточные элементы (волокнистая трахеида, перегородчатое волокно и др). Имеются также вертикальные тяжи паренхимных клеток.

Так как древесина состоит в основном из мёртвых клеток с одревесневшими оболочками, то она выполняет основную механическую функцию (твёрдость и жёсткость). Вторая функция древесины – водопроводящая , которая обеспечивается сосудами и трахеидами (восходящий ток). Третья функция - запасающая , так как в составе древесины довольно много клеток живой паренхимы.

Как и в лубе, из-за деформаций в результате роста стебля в толщину и некоторых других причин, водопроводящую функцию в древесине выполняют слои, расположенные около камбия. Они обычно имеют светлую окраску, толщину в несколько сантиметров и называются заболонь . Молодые водопроводящие элементы работают несколько лет, а затем сдавливаются вновь образующимися слоями и оттесняются к центру стебля. Клетки паренхимы, окружающие сосуды и трахеиды прорастают в них через поры, образуя тиллы (выросты клеток паренхимы) и закупоривают сосуд (тиллозис древесины ). В тиллах откладываются различные вещества, в том числе смолы, танины, которые часто окрашивают центральную часть древесины в более тёмный цвет. Такая центральная, часто окрашенная, часть древесины, выполняющая запасающую и механическую функцию называется ядро . (Хорошо заметна, например, у дуба – ядровая древесина. Если ядро по цвету не отличается от заболони – спелая древесина (груша, осина, ель и др.)).

В древесине хорошо видны годичные кольца.

ТКАНИ. КЛАССИФИКАЦИЯ ТКАНЕЙ.

В основе организации высших растений лежит принцип специализации клеток, который заключается в том, что каждая клетка организма выполняет не все присущие ей функции, а только некоторые, но зато более полно и совершенно.

Ткани - устойчивые, закономерно повторяющиеся комплексы клеток, сходные по происхождению, строению и приспособленные к выполнению одной или нескольких функций.

Существуют различные классификации тканей, но все они достаточно условны.

В зависимости от основной функции различают несколько групп растительных тканей.

1. Образовательные ткани, или меристемы, - обладают способностью к делению и формированию всех прочих тканей.

2. Покровные ткани:

Первичные;

Вторичные;

Третичные.

3. Основные ткани - составляют большую часть тела растения. Различают следующие основные ткани:

Ассимиляционные (хлорофиллоносные);

Запасающие;

Воздухоносные (аэренхима);

Водоносные.

4. Механические ткани (опорные, скелетные):

Колленхима;

Склеренхима.

5. Проводящие ткани:

Ксилема (древесина) – ткань восходящего тока;

Флоэма (луб) – ткань нисходящего тока.

6. Выделительные ткани:

Наружные:

Железистые волоски;

Гидатоды – водяные устьица;

Нектарники;

Внутренние:

Выделительные клетки с эфирными маслами, смолами, дубильными веществами;

Многоклеточные вместилища выделений, млечники.

По способности клеток к делению различают два типа тканей: образовательные, или меристемы, и постоянные - покровные, выделительные, основные, механические, проводящие.

Ткань называют простой, если все ее клетки одинаковы по форме и функциям (паренхима, склеренхима, колленхима). Сложные ткани состоят из клеток, неодинаковых по форме, строению и функциям, но связанных общим происхождением (например, ксилема, флоэма).

Существует также классификация тканей, основанная на их происхождении (онтогенетическая). Согласно этой классификации различают первичные и вторичные ткани. Из первичной меристемы, находящейся на верхушке побега и кончике корня, а также из зародыша семени формируются первичные постоянные ткани (эпидерма, колленхима, склеренхима, ассимиляционная ткань, эпиблема). Клетки постоянных тканей неспособны к дальнейшему делению. Из клеток специализированной меристемы – прокамбия - формируются первичные проводящие ткани (первичная ксилема, первичная флоэма).

Из вторичной меристемы – камбия - формируются вторичные ткани: вторичная ксилема, вторичная флоэма; из феллогена образуются пробка, феллодерма, чечевички, возникающие при утолщении стебля и корня. Вторичные ткани, как правило, встречаются у голосеменных и двудольных покрытосеменных растений. Мощное развитие вторичных тканей – древесины и луба характерно для древесных растений.

ОБРАЗОВАТЕЛЬНЫЕ ТКАНИ

Образовательные ткани благодаря постоянному митотическому делению их клеток обеспечивают образование всех тканей растения, т.е. фактически формируют его тело. Любая клетка в своем развитии проходит три стадии: эмбриональную, роста и стадию дифференциации (то есть приобретения клеткой определенной функции). По мере дифференциации зародыша первичная меристема сохраняется только на верхушке будущего побега (в конусе нарастания) и на кончике корня – апикальные (верхушечные) меристемы. Зародыш любого растения состоит из клеток меристемы.

Цитологическая характеристика меристем. Типичные признаки наиболее отчетливо выражены в верхушечных меристемах. Эти меристемы составлены изодиаметрическими многогранными клетками, не разделенными межклетниками. Их оболочки тонки, содержат мало целлюлозы и способны растягиваться.

Полость каждой клетки заполнена густой цитоплазмой с относительно крупным ядром, занимающим центральное положение, и интенсивно делящейся митозом. В гиалоплазме много диффузно разбросанных рибосом, пропластид, митохондрий и диктиосом. Вакуолей немного, и они мелкие. Проводящие ткани образуются из меристемы, имеющей прозенхимную форму и крупные вакуоли, – прокамбия и камбия. Клетки прокамбия в поперечном сечении многоугольные, клетки камбия – прямоугольные.

Клетки, сохраняющие свои меристематические свойства, продолжают делиться, образуя все новые и новые клетки, называемые инициалями. Часть дочерних клеток дифференцируется, превращаясь в клетки различных тканей, их называют производными инициалей. Клетки инициалей могут делиться неопределенно много раз, а производные инициалей делятся один или несколько раз и превращаются в постоянные ткани.

По происхождению различают первичные и вторичные меристемы.

Первичные меристемы

Первичные меристемы происходят непосредственно из меристемы зародыша и обладают способностью к делению. По положению в растении первичные меристемы могут быть верхушечными (апикальными), вставочными (интеркалярными) и боковыми (латеральными).

Верхушечные (апикальные) меристемы - такие меристемы, которые располагаются у взрослых растений на верхушках стеблей и кончиках корней и обеспечивают рост тела в длину. У стеблей в конусе нарастания выделяют два меристематических слоя: тунику, из которой образуются покровная ткань и периферическая часть первичной коры, и корпус, из которого образуются внутренняя часть первичной коры и центральный осевой цилиндр (рис. 2.3).

Рис. 2.3. Апикальные меристемы стебля: а - продольный срез: 1 – конус нарастания; 2 – зачаток листа; 3 – бугорок пазушной почки;

В кончике корня различают три слоя:

1) дерматоген, из которого образуется первичная покровно-всасывающая ткань – ризодерма;

2) периблему, из которой развиваются ткани первичной коры;

3) плером, образующий ткани центрального осевого цилиндра.

по происхождению могут быть первичными и вторичными, на поперечном срезе осевых органов имеют вид колец. Примером первичной боковой меристемы служат прокамбий и перицикл. Из прокамбия формируются камбий и первичные элементы сосудисто-волокнистых пучков (первичная флоэма и первичная ксилема), при этом клетки прокамбия непосредственно дифференцируются в клетки первичных проводящих тканей.

Боковые меристемы располагаются параллельно поверхности органа и обеспечивают рост осевых органов в толщину.

Вставочные (интеркалярные) меристемы чаще первичные и сохраняются в виде отдельных участков в зонах активного роста в различных частях растения (например, в основании черешков листьев, у оснований междоузлий). В основании междоузлий у злаков деятельность этой меристемы ведет к удлинению междоузлий, что обеспечивает рост стебля в длину.

Вторичные меристемы

К вторичным относят боковые и раневые меристемы.

Боковые (латеральные) меристемы представлены камбием и феллогеном. Они формируются из промеристем (прокамбия) или постоянных тканей путем их дедифференцировки. Клетки камбия делятся перегородками, параллельными поверхности органа (периклинально). Из клеток, отложенных камбием наружу, развиваются элементы вторичной флоэмы, а из клеток, отложенных внутрь, – вторичной ксилемы. Камбий, возникший из постоянных тканей путем дедифференцировки, называют добавочньм. По строению и функции он не отличается от камбия, возникшего из промеристем. Феллоген формируется из постоянных тканей, расположенных в субэпидермальных слоях (под эпидермой). Делясь периклинально, феллоген отделяет наружу будущие клетки пробки (феллемы), а внутрь – клетки феллодермы. Таким образом, феллоген формирует вторичную покровную ткань – перидерму. Боковые меристемы располагаются параллельно поверхности органа и обеспечивают рост осевых органов в толщину.

Раневые меристемы образуются при повреждении тканей и органов. Вокруг повреждения живые клетки дедифференцируются, начинают делиться и тем самым превращаются во вторичную меристему. Их задача – образовать плотную защитную ткань, состоящую из паренхимных клеток, – каллюс. Эта ткань беловатого или желтоватого цвета, ее клетки имеют крупные ядра и достаточно толстые клеточные стенки. Каллюс возникает при прививках, обеспечивая срастание привоя с подвоем, и в основании черенков. В нем могут закладываться придаточные корни и почки, поэтому его используют для получения культуры изолированных тканей.

ПОКРОВНЫЕ ТКАНИ

Первичная покровная ткань

К первичной покровной ткани относят эпидерму собственно эпидермальных, околоустьичных, замыкающих клеток устьица и трихом.

Пектиновые вещества и целлюлоза, входящие в клеточную стенку, могут подвергаться ослизнению с образованием слизей и камедей. Они представляют собой полимерные углеводы, родственные пектиновым веществам, и отличаются способностью к сильному набуханию при соприкосновении с водой. Камеди в набухшем состоянии клейкие и могут вытягиваться в нити, тогда как слизи сильно расплываются и в нити не вытягиваются. Пектиновые слизи встречаются у представителей семейств лилейных, крестоцветных, мальвовых, липовых, розоцветных, в отличие от целлюлозных слизей, встречающихся гораздо реже (например, у орхидных).

Устьица представляют собой высокоспециализированные образования эпидермы, состоящие из двух замыкающих клеток бобовидной формы и устьичной щели (своеобразного межклетника между ними). Имеются главным образом в листьях, но встречаются и в стебле (рис. 2.6).

Рис. 2.6. Строение устьица: а, б - кожица листа тимьяна (вид сверху и на поперечном срезе); в - кожица со стебля цереуса (семейство кактусовых); 1 – собственно эпидермальные клетки; 2 – замыкающие клетки устьица; 3 – устьичная щель; 4 – воздухоносная полость; 5 – клетки хлорофиллоносной паренхимы; А – кутикула; Б – кутикулярный слой – оболочка с суберином и воском; В – целлюлозный слой стенки; Г – ядро с ядрышком; Д – хлоропласты

Стенки замыкающих клеток утолщены неравномерно: стенки, направленные к щели (брюшные), значительно утолщены по сравнению со стенками, направленными от щели (спинными). Щель может расширяться и сужаться, регулируя транспирацию и газообмен. Под щелью расположена крупная дыхательная полость (межклетник), окруженная клетками мезофилла листа.

Замыкающие клетки окружены околоустьичными клетками, которые совместно образуют устьичный комплекс (рис. 2.7). Различают следующие основные типы устьичных комплексов:

Рис. 2.7. Основные типы устьичного аппарата: 1 – аномоцитный (у всех высших растений, кроме хвощей); 2 – диацитный (у папоротников и цветковых); 3 – парацитный (у папоротников, хвощей, цветковых и гнетовых); 4 – анизоцитный (только у цветковых); 5 – тетрацитный (главным образом у однодольных); 6 – анциклоцитный (у папоротников, голосеменных и цветковых)

1) аномоцитный (беспорядочный) – замыкающие клетки не имеют ярко выраженных околоустьичных клеток; характерен для всех высших растений, исключая хвойные;

2) анизоцитный (неравноклеточный) – замыкающие клетки устьица окружены тремя околоустьичными клетками, одна из которых намного крупнее (или меньше) остальных;

3) парацитный (параллельно-клеточный) – одна околоустьичная клетка (или более) расположена параллельно замыкающим;

4) диацитный (перекрестно-клеточный) – две околоустьичные клетки расположены перпендикулярно замыкающим;

5) тетрацитный (от греч. tetra - четыре) – главным образом у однодольных;

Устьица расположены на нижней стороне листа, но у водных растений с плавающими листьями они находятся только на верхней стороне листа. По форме клеток эпидермы листа и расположению устьиц можно отличить однодольное растение от двудольного (рис. 2.8). Собственно эпидермальные клетки листа двудольных растений в очертаниях волнистые (рис. 2.9), а у однодольных они вытянутые, ромбической формы.

Рис. 2.8. Расположение устьиц на эпидерме (вид с поверхности): а - двудольные растения: 1 - буквица; 2 – арбуз; б - однодольные растения: 3 – кукуруза; 4 – ирис

Типы устьиц по уровню расположения относительно поверхности эпидермиса можно подразделить следующим образом.

1.7.1. Устьица, расположенные в одной плоскости с эпидермисом. Наиболее распространенный тип и обычно в описании микроскопии лекарственного растительного сырья не указывается, т.е. данный пункт опускается. Диагностическими признаками будут либо выступающие, либо погруженные устьица.

1.7.2. Выступающие устьица - устьица, расположенные над эпидермисом. Обычно при вращении микровинта микроскопа (при опускании объектива) сначала обнаруживаются такие устьица, а уже затем появляются клетки эпидермиса, поэтому на фотографии запечатлеть их с поверхности листа практически невозможно, равно как и изобразить на рисунке. В одной плоскости с эпидермисом такие устьица можно увидеть на поперечных срезах, но для этого срез должен пройти через устьице, что трудно получить при их редком расположении на листе. Такие устьица характерны, например, для листьев толокнянки.

1.7.3. Погруженные устьица - устьица, погруженные в эпидермис. При наблюдении под микроскопом при вращении микровинта (при опускании объектива) сначала четко обнаруживаются клетки эпидермиса, затем становится возможным более четко увидеть контуры устьиц. На фотографиях и рисунках препаратов с поверхности их также трудно отобразить. Встречаются в листьях ландыша, листьях вахты, листьях эвкалипта. Иногда углубления, в которых располагаются устьица, выстланы или прикрыты волосками и называются устьичными криптами.

1.8. Типы устьичных клеток

В литературе описывается 19 типов , нами выбраны только те, которые используются в анализе лекарственного растительного сырья**.

Рис. 63. Типы устьичных клеток. А – чечевицевидные; Б – сферовидные; В – колпачковидные; Г – ладьевидные

1.8.1. Чечевицевидные - 2 одинаковые клетки полулунной формы расположены симметрично. На фронтальной плоскости утолщение оболочки почти равномерное. Щель веретеновидная (рис. 63, А). Тип устьичных клеток характерен для большинства растений.

1.8.2. Сферовидные - две одинаковые, сильно кругообразноизогнутые клетки расположены симметрично. На фронтальной плоскости утолщение оболочки почти равномерное. Щель круглая (рис. 63, Б).

1.8.3. Колпачковидные - две одинаковые клетки полулунной формы в полярных частях имеют утолщения в виде колпачка. Щель веретеновидная (рис. 63, В). Встречаются у наперстянок.

1.8.4. Ладьевидные - внутренние стенки устьичных клеток утолщены. Щель веретеновидная (рис. 63, Г). Наблюдается в траве золототысячника, в листьях вахты.

Механизм работы устьиц обусловлен осмотическими свойствами клеток. При освещении поверхности листа солнцем в хлоропластах замыкающих клеток происходит активный процесс фотосинтеза. Насыщение клеток продуктами фотосинтеза, сахарами влечет за собой активное поступление в клетки ионов калия, вследствие чего концентрация клеточного сока в замыкающих клетках возрастает. Возникает разность концентрации клеточного сока околоустьичных и замыкающих клеток. В силу осмотических свойств клеток вода из околоустьичных клеток поступает в замыкающие, что ведет к увеличению объема последних и резкому возрастанию тургора. Утолщение «брюшных» стенок замыкающих клеток, обращенных к устьичной щели, обеспечивает неравномерное растяжение клеточной стенки; замыкающие клетки приобретают выраженную бобовидную форму, и устьичная щель открывается. При снижении интенсивности фотосинтеза (например, вечером) уменьшается образование сахаров в замыкающих клетках. Приток ионов калия прекращается. Концентрация клеточного сока в замыкающих клетках снижается по сравнению с околоустьичными. Вода путем осмоса уходит из замыкающих клеток, понижая их тургор, в результате ночью устьичная щель закрывается.

Клетки эпидермы плотно сомкнуты между собой, благодаря этому эпидерма выполняет целый ряд функций:

Препятствует проникновению болезнетворных организмов внутрь растения;

Защищает внутренние ткани от механических повреждений;

Регулирует газообмен и транспирацию;

Через нее выделяются вода, соли;

Может функционировать как всасывающая ткань;

принимает участие в синтезе различных веществ, восприятии раздражений и в движении листьев.

Трихомы - различные по форме, строению и функциям выросты клеток эпидермы: волоски, чешуйки, щетинки и т.п. Их подразделяют на кроющие и железистые. Железистые трихомы, в отличие от кроющих, имеют клетки, выделяющие секрет. Кроющие волоски, образуя на растении шерстистый, войлочный или иной покров, отражают часть солнечных лучей и тем самым уменьшают транспирацию. Иногда волоски находятся только там, где расположены устьица, например, на нижней стороне листа мать-и-мачехи. У некоторых растений живые волоски увеличивают общую испаряющую поверхность, что способствует ускорению транспирации.

Размеры трихом значительно варьируют. Наиболее длинные трихомы (до 5-6 см) покрывают семена хлопчатника. Кроющие трихомы имеют форму простых одно или многоклеточных, разветвленных или звездчатых волосков. Кроющие трихомы могут длительное время оставаться живыми или быстро отмирать, заполняясь воздухом.

От трихом, возникающих только при участии эпидермальных клеток, отличаются эмергенцы, в образовании которых участвуют и более глубоко расположенные ткани субэпидермальных слоев.

Анатомо-диагностические признаки, имеющие наибольшее значение и высокую вариабельность при определении лекарственного сырья. Волоски могут быть простые и головчатые, которые в свою очередь могут быть одноклеточными и многоклеточными. Многоклеточные волоски могут быть однорядными, двухрядными и ветвистыми.

1.9.1. Простые волоски.

А. Простые одноклеточные волоски

Рис. 68. Простые одноклеточные волоски. А – сосочковидный; Б – нитевидный; В – пузыревидные; Г – шиповидный; Д – крючковидный; Е – ретортовидный; Ж – тупонитевидный гофрированный; З – остроконусовидный; И – тупоконусовидный; К – двухконечный; Л – трехконечный; М, Н, О – многоконечный; П – бугристый; Р – булавовидный

1. Сосочковидные (рис. 68, А; рис. 69-74) – невысокие, но широкие выросты эпидермальных клеток. Чаще образуются на лепестках. Могут быть туповерхушечные и островерхушечные. Встречаются на листьях чабреца, цветках ландыша, цветках фиалки трехцветной, по краю листьев золототысячника, в траве горечавки бородатой и др.

2. Конусовидные (рис. 68, З, И; рис. 75-79) – прямые и наклоненные под углом к поверхности волоски, оканчивающиеся тупым (тупоконусовидные) или острым (остроконусовидные) концом. Наиболее широко распространенные волоски. Обычно бывают прямые. Наклоненные к поверхности волоски наблюдаются на листьях чабреца. Остроконусовидные волоски встречаются на листьях сенны, листьях брусники, в траве фиалки трехцветной (на листьях), в траве чабреца и др. Тупоконусовидные волоски имеются на эпидермисе плодов аниса, на лепестках цветков фиалки трехцветной.

3. Нитевидные (рис. 68, Б,Ж; рис. 80, 81) – тонкие и длинные волоски. Могут быть прямые и гофрированные. Прямые нитевидные волоски обнаруживаются на эпидермисе плодов боярышника и малины. Гофрированные тупонитевидные волоски наблюдаются на эпидермисе лепестков фиалки (рис. 82).

4. Ретортовидные (рис. 68, Е; рис. 83) – волоски с расширенным основанием и узким изогнутым или прямым окончанием. Встречаются в соплодиях хмеля, траве зубчатки.

5. Пузыревидные (рис. 68,В; рис. 84) – волоски в виде небольших пузырей. Их можно обнаружить, например, в цветках бессмертника.

6. Крючковидные (рис. 68,Д; рис. 85-87) – волоски, заостренные на верхушке и изогнутые в виде крючка. Эти волоски можно встретить у основания листьев толокнянки, на поверхности листьев брусники, сенны, плодов аниса.

7. Бахромчатые (рис. 88, 89) – длинные выросты эпидермальных клеток, расположенные по краю листа, лепестка или чашелистика. Такие волоски имеются, например, по краю лепестков ландыша и фиалки.

8. Шиповидные (рис. 68, Г; рис. 90) – волоски почти округлой формы с заостренным концом. Наблюдаются в траве фиалки трехцветной.

9. Булавовидные (рис. 68, Р; рис. 91) – волоски с расширенной конечной частью, напоминающие булаву. Имеются на лепестках чабреца, лепестках фиалки трехцветной.

10. Двухконечные (рис. 68, К) – волоски, разветвленные на два конца. Наблюдаются в траве пастушьей сумки.

11. Трехконечные (многоконечные) (рис. 68, Л-О) – волоски, разветвленные на три (и более) конца. Наблюдаются в траве пастушьей сумки.

12. Бугристые (рис. 68, П) – конусовидные волоски, имеющие выступы (бугры) на своей поверхности.

Б. Простые многоклеточные однорядные волоски

Контур многоклеточного волоска может совпадать с таковым одноклеточного волоска, но содержать две и более клеток и соответственно называться как аналогичный одноклеточный волосок с указанием количества клеток, например 2-клеточный ретортовидный волосок, 11- клеточный нитевидный волосок, 10-15-клеточный конусовидный волосок.

Рис. 92. Простые многоклеточные волоски. А – конусовидный; Б – пузыревидный; В – суставчатый; Г – бичевидный; Д – пе-ристый; Е – Т-образный; Ж – двухрядные; З – чешуйчатый; И – пучковый; Л – параллельный; М – вильчатый; К – щетинистые

1. Конусовидные (рис. 92, А; 93-96). Наиболее широко встречающиеся волоски. Бывают прямые и наклоненные к поверхности, последние встречаются редко (например, в траве тимьяна). Конусовидные волоски могут быть остро- и тупоконусовидные. Более распространены остроконусовидные волоски (в траве душицы, в листьях мяты, шалфея и др.). Тупоконусовидные встречаются в цветках календулы.

2. Ретортовидные - волоски с расширенным основанием и узким изогнутым или прямым окончанием.

3. Пузыревидные (рис. 92, Б; рис. 97) – волоски в виде небольших пузырей. Имеются на поверхности завязи бессмертника.

4. Нитевидные - тонкие и длинные многоклеточные волоски.

5. Крючковидные - волоски, заостренные на верхушке и изогнутые в виде крючка.

6. Гусеницевидные (рис. 98, 99) – волоски практически одинаковой толщины на всем своем протяжении, состоящие из почти одинаковых коротких клеток, с тупым концом и напоминающие гусеницу. Наблюдаются в траве фиалки трехцветной, в траве череды.

7. Бахромчатые (рис. 100) – длинные многоклеточные выросты эпидермальных клеток, расположенные по краю листа, лепестка или чашелистика. Встречаются в траве череды.

8. Бичевидные (рис. 92, Г; рис. 101-104) – волоски, имеющие многоклеточное основание, состоящее из цепи коротких клеток, и длинную нитевидную извилистую конечную клетку. В литературе такие волоски описывают как кнутовидные, шнуровидные, нитевидные, войлочные. Тип волосков характерный для семейства Asteraceae. Встречается в траве тысячелистника, цветках бессмертника, листьях мать-и-мачехи, цветках пижмы и др.

9. Суставчатые (рис. 92, В; рис. 105, 106) – волоски, имеющие расширенные основания клеток в местах их сочленения (напоминающие сустав). Подобные волоски обнаруживаются в траве пустырника, на лепестках душицы, редко в траве чабреца.

10. Бугристые - волоски, имеющие выступы (бугры) на своей поверхности. Двухклеточные бугристые волоки наблюдаются, например, в листве термопсиса.

В. Простые многоклеточные ветвистые волоски

1. Параллельные (рис. 92, Л; рис. 107, 108) – волоски, состоящие из двух длинных прямых клеток (волосков), сросшихся основаниями. Встречаются в цветках липы, редко в плодах шиповника и боярышника.

2. Вильчатые (рис. 92, М; рис. 109, 110) – волоски, состоящие из двух длинных извилистых клеток (волосков), сросшихся основаниями. Наблюдаются в цветках липы, очень редко в цветках и плодах боярышника.

3. Звездчатые (рис. 111) – волоски, состоящие из 3 и более длинных извилистых клеток (волосков), сросшихся основаниями. Обнаруживаются в цветках липы.

4. Чешуйчатые (рис. 92, З) – волоски, состоящие из многоклеточной пластинки (в виде розетки) и короткой ножки (ножка может отсутствовать). Такие волоски имеются в облепихе. (Данное название волосков приведено в соответствии с современной ботанической терминологией ; по другим данным эти волоски называют звездчатыми или щитковидными чешуйчатыми ).

5. Т-образные (рис. 92, Е) – двухконечный волосок, имеющий одно-, многоклеточную ножку. В литературе описываются также как рогообразные, коромыслообразные.

6. Перистые (рис. 92, Д) – многоклеточные волоски, напоминающие ветвящееся дерево. Обнаруживаются, например, в коровяке.

Г. Простые многоклеточные многорядные волоски

1. Двухрядные (рис. 92, Ж; рис. 112, 113) – волоски, клетки которых расположены в два ряда. Их можно наблюдать в цветках календулы, в траве сушеницы.

2. Пучковые (рис. 92, И) – волоски, состоящие из двух и более клеток, плотно сросшихся друг с другом, образуя пучок.

3. Щетинистые (рис. 92 К, рис. 114) – многоклеточные волоски, состоящие из сросшихся друг с другом волосков разной длины и имеющие свободные заостренные концы. Такие волоски обычно являются волосками летучки (семейство Asteraceae). В литературе их еще называют зазубренными сложными, шилообразными.

1.9.2. Головчатые волоски. Головчатые волоски называют также железистыми. Они могут быть одноклеточными и многоклеточными.

Рис. 115. Головчатые волоски. А – с одноклеточной ножкой и одноклеточной головкой; Б – с двухрядной ножкой и одноклеточной головкой; В – с двухрядной ножкой и двурядной головкой; Г – с одноклеточной ножкой и многоклеточной головкой; Д – с многоклеточной ножкой и одноклеточной головкой; Ж – с многоклеточной ножкой и многоклеточной головкой; З – одноклеточный (жгучий); И – щитковидный

А. Одноклеточные головчатые волоски

Представители этого типа волосков могут быть конусовидными или ретортовидными, но всегда имеют на конце головку. Такие волоски есть, например, на листьях крапивы. Б. Многоклеточные головчатые (железистые) волоски

1. Волоски, имеющие многоклеточную головку и одноклеточную ножку (рис. 115, Г; рис. 116-120). Встречаются в траве пустырника, листьях толокнянки.

2. Волоски, имеющие одноклеточную головку и одноклеточную ножку (рис. 115, А; рис. 121-123). Встречаются в траве пустырника, листьях шалфея, цветках бузины, листьях мяты.

3. Волоски, имеющие одноклеточную головку и многоклеточную ножку (рис. 115, Д; рис. 124). Встречаются в траве пустырника, листьях шалфея, цветках календулы и цветоножках ромашки.

4. Волоски, имеющие многоклеточную головку и многоклеточную ножку (рис. 115, Ж; рис. 125). Встречаются в траве пустырника, листьях толокнянки, цветках липы, цветках календулы, траве фиалки.

5. Волоски, имеющие одноклеточную головку и двухрядную ножку (рис. 115, Б; рис. 126). Встречаются в цветках календулы и бессмертника.

6. Волоски, имеющие двухрядную головку и двухрядную ножку (рис. 115, В; рис. 127- 130). Встречаются в цветках календулы и бессмертника, в траве сушеницы топяной.

7. Булавовидные многоклеточные железистые волоски (рис. 131-133; см. рис. 155, Д) – волоски, имеющие контур с расширенной конечной частью, напоминающие булаву. Их можно наблюдать, например, в листьях брусники, траве фиалки.

8. Щитковидные многоклеточные железистые волоски (рис. 115, И; рис. 134) представляют собой щиток из многоугольных тонкостенных клеток, сидящий на одно-, двухклеточной короткой ножке. Кутикула щитка отодвигается от клеток выделяющимся под нее эфирным маслом. Они обнаружены в соплодиях хмеля.

1.10. Характер утолщенности клеточных стенок и покрывающей кутикулы волосков

А. Характер утолщенности клеточных стенок

1.10.1. Тонкостенные (рис. 135-137). Большинство волосков тонкостенные. Стенки клеток многоклеточных длинных тонкостенных волосков иногда спадаются, нарушая ровный контур волоска. Такие волоски, например, встречаются на нижнем эпидермисе листа какалии.

1.10.2. Толстостенные (рис. 138, 139). Встречаются в плодах шиповника, траве череды, траве лепедецы даурской и др.

1.10.3. Неравномерно утолщенные. Можно наблюдать в траве пустырника (рис. 140). К этой же категории относятся волоски шиповника с косопоперечными порами (рис. 141, 142).

Б. Характер покрывающей кутикулы волосков

1.10.4. Гладкая поверхность (рис. 143). Волоски с такой поверхностью наблюдаются, например, в листьях подорожника, траве чистотела и др.

1.10.5. Бородавчатая поверхность (см. рис. 1, Ж; рис. 144, 145) – эпидермис образует выступы в виде бугорков (бородавок). Имеются волоски, например, в траве фиалки, в траве чабреца, в траве пустырника, в листьях мяты, в листьях сенны и др. При этом поверхность волоска может быть слабобородавчатой, когда образуются небольшие выступы кутикулы, и грубобородавчатой, когда выступы образуются значительные. В первом случае в качестве примера можно привести волоски в траве фиалки, во втором – волоски листьев сенны и травы чабреца.

1.10.6. Крупнобугристая поверхность (см. рис. 68, П) – кутикула образует очень большие выступы, например волоски травы термопсиса ланцетного.

10.7. Морщинистая поверхность - складки или волны кутикулы волоска от основания к его вершине (рис. 146). Наблюдается чаще у сосочков, например, в траве золототысячника, цветках бузины. Однако морщинистая поверхность может быть и у обычных волосков, например, в траве череды. У основания морщинистую поверхность имеют волоски листьев мяты (рис. 147).

1.10.8. Штриховатая поверхность - эпидермис образует короткие выступы в виде штрихов (бугорков, бородавок). Редко встречается и является промежуточным вариантом между бородавчатой и морщинистой поверхностью. Наблюдается, например, на волосках цветков бузины (рис. 148).

1.11. Особенности мест присоединения волосков

1.11.1. Обычные места прикрепления (рис.149, 150) – волоски присоединяются к клетке или между клеток эпидермиса. Наиболее распространенный тип встречается, например, в листьях мать-и-мачехи, листьях мяты, листьях шалфея, траве пустырника, траве фиалки и др.

1.11.2. Выросты из клеток эпидермиса (см. рис. 68, А; 69-74). Наблюдаются в цветках бузины, в траве золототысячника, лепестках пустырника, в траве горечавки бородатой, эпидермисе плодов аниса и др.

1.11.3. У основания волоска образуется розетка из клеток эпидермиса (рис. 151, 152). Имеется в листьях сенны, листьях подорожника, в траве душицы и др.

1.11.4. Расширенное основание волоска (рис. 153). Встречается в листьях подорожника.

1.11.5. Расширенная часть основания волоска погружена в цоколь из субэпидермальных тканей – эмергенцы (см. рис. 115, 3). Можно наблюдать, например, в листьях крапивы.

1.11.6. Многоклеточное основание волосков (рис. 154). Можно наблюдать, например, в траве череды.

Нередко волоски обламываются, оставляя на эпидермисе места своего прикрепления, что также необходимо отмечать как анатомо-диагностический признак лекарственного растительного сырья.

ВТОРИЧНАЯ ПОКРОВНАЯ ТКАНЬ

Вторичную покровную ткань называют перидермой. Это сложная покровная ткань стеблей, корней и корневищ многолетних растений. Она сменяет эпидерму осевых органов, которая постепенно отмирает и слущивается. Перидерма образуется из феллогена (вторичной меристемы). Феллоген закладывается в эпидерме, субэпидермальном слое и даже в глубоких слоях осевых органов. Клетки феллогена делятся следующим образом наружу откладывают клетки пробки, а внутрь – живые паренхимные клетки феллодермы. В клетках феллодермы стеблей содержатся хлоропласты.

Пробка состоит из мертвых клеток, у которых клеточная стенка пропитана жироподобным веществом суберином. Клетки расположены ровными рядами, имеют прямоугольную форму (на поперечном срезе), плотно прилегают друг к другу, формируя многослойный футляр. Пробка охраняет внутренние живые ткани от потери влаги, резких температурных колебаний и проникновения микроорганизмов. Живые ткани, лежащие под пробкой, нуждаются в газообмене и удалении избытка влаги. Именно поэтому под устьицем вследствие деления субэпидермальных слоев (еще до появления перидермы), а в дальнейшем и феллогена откладываются живые, рыхло расположенные, со множеством межклетников паренхимные клетки, называемыевыполняющей тка нью , которая разрывает эпидерму и создает возможность газообмена и транспирации с внешней средой. Это структурное образование называют чечевичкой (рис. 2.12).

Рис. 2.12. Строение перидермы с чечевичкой: 1 – выполняющая ткань чечевички; 2 – остатки эпидермы; 3 – пробка (феллема); 4 – феллоген; 5 – феллодерма

Чечевички, имеющие вид небольших бугорков, отчетливо выделяются на поверхности побегов деревьев и кустарников (рис. 2.13).

На стволах березы их остатки наблюдаются в виде характерных поперечных черных полосок, у осины они принимают форму ромбов.

Третичная покровная ткань

Корка (ритидом) представляет собой третичную покровную ткань, которая образуется у многолетних растений в корне, стебле, корневище. Каждый год в более глубоких слоях закладывается новый слой феллогена и образуется перидерма. Наружный слой перидермы – пробка – изолирует все вышележащие ткани, в результате чего они отмирают. Таким образом, совокупность многочисленных перидерм с отмершими между ними тканями и есть корка (рис. 2.14).

Рис. 2.14. Корка дуба: 1 – слои пробки; 2 – волокна; 3 – остатки первичной коры; 4 – друзы оксалата кальция